要解不等式首先得了解不等式性质,依据什么解不等式,并且不等式的性质在高考中会经常遇到。本篇将对其进行阐述说明。
如果x>y,那么y
如果x>y,y>z;那么x>z;(传递性)
如果x>y,而z为任意实数或整式,那么x+z>y+z,即不等式两边同时加或减去同一个整式,不等号方向不变;
如果x>y,z>0,那么xz>yz,即不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变;
如果x>y,z<0,那么xz 如果x>y,m>n,那么x+m>y+n; 如果x>y>0,m>n>0,那么xm>yn; 如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂 或者说,不等式的基本性质的另一种表达方式有: ①对称性; ②传递性; ③加法单调性,即同向不等式可加性; ④乘法单调性; ⑤同向正值不等式可乘性; ⑥正值不等式可乘方; ⑦正值不等式可开方; ⑧倒数法则。 如果由不等式的基本性质出发,通过逻辑推理,可以论证大量的初等不等式。 1、去分母 2、去括号 3、移项 4、合并同类项 5、系数化为1 1、去分母,不能漏乘; 2、去括号不能漏乘,同时要注意括号前的符号; 3、移项要变号; 4、合并同类项要细心,不能加或减错; 5、把系数变为1,一定要注意两边乘或除的是正的还是负的。解不等式步骤
需要注意的问题